Table of contents

Foreword to third edition .. vii

List of symbols .. x

1 Definition of the mechanical system and component parts
 1.1 General..1
 1.2 Traction drive elevators .. 2
 1.3 Linear induction motor drive elevators ... 5
 1.4 SchindlerMobile® .. 10

2 Suspension of car and counterweight
 2.1 Methods of suspension and equalizing gear 16
 2.2 Specification, construction and recommendations for the selection of elevator ropes ... 20
 2.3 Calculation of elevator ropes and factor of safety 31
 2.4 Rope termination .. 37
 2.5 Rope stretch ... 42
 2.6 Life, maintenance and replacement of elevator ropes 44
 2.7 Compensating cables ... 53

3 Types of drive
 3.1 Traction drive ... 61
 3.1.1 Roping systems ... 61
 3.1.2 Traction sheave and diverting pulley ... 67
 3.1.3 Forces on sheave ... 72
 3.1.4 Specific pressure of the rope in the sheave groove 74
 3.1.5 Coefficient of friction of the ropes in the grooves 81
 3.1.6 Traction under different conditions .. 83
 3.1.7 Rope slip. Wear of sheave grooves .. 94
 3.2 Reduction of torques ... 95
 3.3 Drum drive ... 101
4 Elevator machines
4.1 Geared elevator machines................................. 109
 4.1.1 General .. 109
 4.1.2 Worm gearing .. 109
 4.1.2.1 Design principles............................. 110
 4.1.2.2 Calculation principles 115
 4.1.2.3 Thermal performance calculation........ 116
 4.1.2.4 Design of machines 121
 4.1.3 Planetary gearing 133
 4.1.4 Harmonic drive 137
 4.1.5 Belt drive machines 142
4.2 Gearless elevator machines 145
 4.2.1 DC gearless machines.............................. 145
 4.2.2 AC gearless machines............................. 150
4.3 Machines for roomless elevators 154
4.4 Testing of geared elevator machines 174

5 Brakes
5.1 Types of brakes .. 187
5.2 Calculation of braking torque and brake selection 195
 5.2.1 Calculation of the static torque M_{st} 195
 5.2.2 Calculation of the dynamic torque M_{i} 197
 5.2.3 Selection of the brake 199
5.3 Testing of elevator brakes 200

6 Counterweight .. 207

7 Guiding the car and counterweight
7.1 Shape, material and jointing of guide rails
 Guide rail brackets 211
7.2 Guide rail calculations 220
 7.2.1 Analysis of stress in guide rails and
deflection during safety gear operation 220
 7.2.2 Forces on guide rails during normal operation
 Classes of loading 230
 7.2.3 Worldwide Standards for guide rail calculations.. 233
 7.2.4 Evaluation of calculation methods 238
 7.2.5 Recommended calculation method for guide rails 239
7.3 Types of guide shoes 250
8 Safety gear
8.1 General ... 263
8.2 Overspeed governor ... 264
8.3 Instantaneous safety gear 269
8.4 Progressive safety gear ... 274
8.5 Prevention from uncontrolled movement of ascending car .. 288

9 Buffers
9.1 Specification .. 299
9.2 Polyurethane buffers (energy accumulation) 300
9.3 Spring buffers (energy accumulation) 306
9.4 Oil buffers (energy dissipation) 310

10 Car frame
10.1 Design principles .. 321
10.2 Calculation of car frame ... 325

11 Doors and door operators
11.1 Specification: types of doors 341
 11.1.1 Swinging doors ... 343
 11.1.2 Horizontally sliding doors 344
 11.1.3 Collapsible doors .. 355
 11.1.4 Vertical sliding doors 356
11.2 Door operators ... 360
 11.2.1 Door operators for horizontally sliding doors 360
 11.2.2 Door operators for vertical sliding doors 372

12 Elevator hoistway and machine room
12.1 General requirements for hoistways 377
12.2 Hoistway structure, equipment and assembly 379
12.3 Top clearances ... 380
 12.3.1 Traction drive elevators 380
 12.3.2 Positive drive elevators 381
12.4 The pit and bottom clearances 382
12.5 Machine and pulley rooms 383
12.6 Sound insulation .. 385
 12.6.1 Elevator machine ... 385
 12.6.2 Controllers ... 392
 12.6.3 Sound sources located in the hoistway 392
List of examples

Example 2.1 ... 57
Example 2.2 ... 58
Example 3.1 ... 103
Example 3.2 ... 105
Example 3.3 ... 106
Example 3.4 ... 107
Example 5.1 ... 202
Example 7.1 ... 258
Foreword to third edition

The third edition represents a remarkable extension of the second edition of *Elevator Mechanical Design*. All chapters have been revised and most of them have been extended to include compliance with modern practice, such as the new technology that has appeared worldwide and the new methods of calculation. A great number of new illustrations have been incorporated to make this book as instructive as possible.

The six years between the second and third editions have been revolutionary in many respects. Completely new elevator concepts have appeared, such as machine-room-less elevators or the SchindlerMobile®. Worldwide standards have been revised and new requirements have been incorporated, e.g., provisions against uncontrolled movement of ascending car that must be accomplished in compliance with the European Standard EN 81-1:1998. All these new designs and requirements have been included in this book.

Some elevator equipment from the time of the second edition has been removed or modified. However, many machines, safety gears, buffers, etc. presented in the second edition are still in successful operation and reflect the state-of-the-art of that time. It has been the author’s decision to show the readers the evolution and development of these designs and constructions.

The author’s intention has been to tell his readers how to design an electric elevator from the mechanical engineering viewpoint and also why the design is implemented in a particular way.

The book is aimed primarily at engineers, designers, elevator consultants, manufacturers and inspectors, but will also be useful to
architects, safety personnel and students with an interest in or involvement in elevator design, operation and safety.

As with the second edition, many of my friends and colleagues have contributed to this work, and I am pleased to express my appreciation to all of them. I owe a lot particularly to those without whose encouragement and support this book would never have been written: to my old-time friend, Mr. William Sturgeon, founder of ELEVATOR WORLD and to Dr. G. Barney, who was the editor of two preceding editions. I feel much obliged to Dott. Eng. Giuseppe Volpe, Dr. David Cameron and Dipl-Ing. Roland Stawinoga for their assistance and for providing many illustrations and technical documentation. I wish to extend my thanks to Mrs. Ginger McDaniel, Ms. Terri Wagner and Ms. Julie Strahan of ELEVATOR WORLD for the proofing and editing of the book and for the technical assistance, to Dr. Jiri Sojka of the Czech Technical University of Prague for formatting the book and, last, but not least, to Mrs. Ricia Hendrick, president of ELEVATOR WORLD, for her wonderful understanding and for the publishing of this book.

Many companies and institutions have contributed to the value of the book by supplying valuable technical documentation. All of them are listed below and their assistance is gratefully acknowledged here. I take the opportunity to thank them most sincerely:

Alberto Sassi S.p.A.
Alpha Getriebebau GmbH
ASME (American Society of Mechanical Engineers)
BODE Aufzüge GmbH
British Guide Rails Ltd.
British Ropes Ltd.
Cameron Design
CEITA s.r.l.
CONTITECH Antriebssysteme GmbH
D & D Developments Ltd.
DRAKO Drahtseilerei Gustav Kocks GmbH
Elevator World Inc.
Elevatori
ELSCO Elevator Safety Company
GIBIERRE s.r.l.
Harmonic Drive
I.G.V. S.p.A.
Ingenieurbüro für Aufzugstechnik
Kone Corporation
LM LIFTMATERIAL GmbH
F.X. Meiller GmbH
Moline Accessories Company
Oleo International
Peelle Company
Savera Group
Schindler Management AG
SchindlerMobile AG
Schwartz GmbH
Siecor Corporation, Republic Wire and Cable
Thyssen Aufzüge GmbH
Titan Machine Corporation
TWIFLEX Limited
United Technologies, Otis Elevator Company
VERTISYS Inc.
Wittur Aufzugteile GmbH
Zahnradfabrik Passau GmbH

Lubomír Janovský
Kolín, Czech Republic
May 1999